2007 PHYSICS EDUCATION RESEARCH CONFERENCE

Greensboro, North Carolina 1 - 2 August 2007

EDITORS
Leon Hsu
Charles Henderson
Laura McCullough

AMERICAN INSTITUTE OF PHYSICS

AIP CONFERENCE PROCEEDINGS 951
Proceedings in the Series of Physics Education Research Conferences

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Publisher</th>
<th>ISBN</th>
</tr>
</thead>
</table>

To learn more about this title, or the AIP Conference Proceedings Series, please visit the webpage http://proceedings.aip.org
CONTENTS

Preface ... ix
Program ... xi
Poster Titles and Authors ... xiii

INVITED PAPERS

Publishing and Refereeing Papers in Physics Education Research 3
L. Hsu, R. Beichner, K. Cummings, J. L. Kolodner, and L. McCullough
Facilitating Conceptual Learning through Analogy and Explanation 7
T. J. Nokes and B. H. Ross
Cognitive Science: Problem Solving and Learning for Physics Education 11
B. H. Ross
Instrumentation in Learning Research ... 15
D. A. Sears and D. L. Schwartz
Cognitive Science: The Science of the (Nearly) Obvious 19
B. Sherin
Conceptual Dynamics in Clinical Interviews ... 23
B. Sherin, V. R. Lee, and M. Krakowski
Physics Learning in the Context of Scaffolded Diagnostic Tasks (I): The Experimental Setup ... 27
E. Yerushalmi, C. Singh, and B. S. Eylon
Physics Learning in the Context of Scaffolded Diagnostic Tasks (II): Preliminary Results ... 31
C. Singh, E. Yerushalmi, and B. S. Eylon

PEER-REVIEWED PAPERS

Investigating Peer Scaffolding in Learning and Transfer of Learning Using Teaching Interviews ... 37
B. Aryal and D. A. Zollman
Student Perceptions of Three Different Physics by Inquiry Classes Using the Laboratory Program Variables Inventory .. 41
G. J. Aubrecht, II
Humans, Intentionality, Experience and Tools for Learning: Some Contributions from Post-Cognitive Theories to the Use of Technology in Physics Education ... 45
J. Bernhard
Improving Students’ Conceptual Understanding of Conductors and Insulators 49
J. Bilak and C. Singh
Epistemic Games in Integration: Modeling Resource Choice 53
K. E. Black and M. C. Wittmann
Measuring Student Effort and Engagement in an Introductory Physics Course 57
S. Bonham
Voltage is the Most Difficult Subject for Students in Physics by Inquiry’s Electric Circuits Module ... 61
C. Bowman and G. J. Aubrecht, II
Reading Time as Evidence for Mental Models in Understanding Physics 65
The Dynamics of Students’ Behaviors and Reasoning during Collaborative Physics Tutorial Sessions ... 69
L. D. Conlin, A. Gupta, R. E. Scherr, and D. Hammer
Hands-On and Minds-On Modeling Activities to Improve Students’ Conceptions of Microscopic Friction ... 73
E. G. Corpuz and N. S. Rebello
Modeling Success: Building Community for Reform ... 77
M. Dancy, E. Brewe, and C. Henderson
Measuring the Effect of Written Feedback on Writing .. 81
D. Demaree
From FCI to CSEM to Lawson Test: A Report on Data Collected at A Community College ... 85
K. Diff and N. Tache

Spending Time on Design: Does It Hurt Physics Learning? .. 88
E. Etkina, A. Van Heuvelen, A. Karelina, M. Ruibal-Villasenor, and D. Rosengrant

Design and Non-Design Labs: Does Transfer Occur? .. 92
A. Karelina, E. Etkina, M. Ruibal-Villasenor, D. Rosengrant, A. Van Heuvelen, and C. Hmelo-Silver

From Physics to Biology: Helping Students Attain All-Terrain Knowledge 96
M. Ruibal-Villasenor, E. Etkina, A. Karelina, D. Rosengrant, R. Jordan, and A. Van Heuvelen

Expert-Novice Differences on a Recognition Memory Test of Physics Diagrams 100
A. Feil and J. Mestre

Coordination of Mathematics and Physical Resources by Physics Graduate Students 104
A. Gupta, E. F. Redish, and D. Hammer

How Elementary Teachers Use What We Teach: The Impact of PER at the K-5 Level 108
D. B. Harlow

Student Categorization of Problems — An Extension .. 112

Students' Ideas of a Blender and Perceptions of Scaffolding Activities 116
J. J. Haynicz and N. S. Rebello

Promoting Instructional Change in New Faculty: An Evaluation of the Physics and Astronomy New Faculty Workshop ... 120
C. Henderson

Explanatory Framework for Popular Physics Lectures ... 124
S. Kapon, U. Ganiel, and B. S. Eylon

Research-Based Practices for Effective Clicker Use ... 128

Expert and Novice Use of Multiple Representations during Physics Problem Solving 132
P. B. Kohl and N. D. Finkelstein

Investigating the Source of the Gender Gap in Introductory Physics 136
L. E. Kost, S. J. Pollock, and N. D. Finkelstein

Exploring the Intersections of Personal Epistemology, Public Epistemology, and Affect 140
L. J. Lising

Students' Perceptions of Case-Reuse Based Problem Solving in Algebra-Based Physics 144
F. Mateycik, Z. Hrepic, D. Jonassen, and N. S. Rebello

Investigating Students' Ideas about Wavefront Aberrometry ... 148
D. L. McBride and D. A. Zollman

Student Estimates of Probability and Uncertainty in Advanced Laboratory and Statistical Physics Courses ... 152
D. B. Mountcastle, B. R. Bucy, and J. R. Thompson

Peer-Assessment of Homework Using Rubrics ... 156
S. Murthy

Learning to Think Like Scientists with the PET Curriculum ... 160
V. K. Otero and K. E. Gray

Salience of Representations and Analogies in Physics ... 164
N. S. Podolefsky and N. D. Finkelstein

Student Understanding of the Physics and Mathematics of Process Variables in P-V Diagrams 168
E. B. Pollock, J. R. Thompson, and D. B. Mountcastle

A Longitudinal Study of the Impact of Curriculum on Conceptual Understanding in E&M 172
S. J. Pollock

FCI-Based Multiple Choice Test for Investigating Students’ Representational Coherence 176
A. Savinainen, P. Nieminen, J. Viiri, J. Korkea-aho, and A. Talikka

The Effect of Field Representation on Student Responses to Magnetic Force Questions 180
T. M. Scaife and A. F. Heckler
Multiple Modes of Reasoning in Physics Problem Solving, with Implications for Instruction
D. Schuster, A. Undreiu, and B. Adams
184

Explicit Reflection in an Introductory Physics Course
M. L. Scott, T. Stelzer, and G. Gladding
188

Introducing Ill-Structured Problems in Introductory Physics Recitations
V. Shekoyan and E. Etkina
192

Effect of Misconception on Transfer in Problem Solving
C. Singh
196

Symbols: Weapons of Math Destruction
E. Torigoe and G. Gladding
200

Understanding How Physics Faculty Use Peer Instruction
C. Turpen and N. D. Finkelstein
204

Comparing Student Use of Mathematical and Physical Vector Representations
J. Van Deventer and M. C. Wittmann
208

Using Students’ Design Tasks to Develop Scientific Abilities
X. Zou
212

Author Index
217
PREFACE

The theme of the Physics Education Research Conference in August 2007 was “Cognitive Science and Physics Education Research.” The invited papers in this volume and several of the contributed papers represent the intersections and interstices of these fields. The Editors thank the organizers of the conference, Steve Kanim, Michael Loverude, and Chandralekha Singh, for their work in producing a successful and exciting meeting.

Over its seven years in print, the Proceedings has gone from a young publication working through its growing pains to a mature venue for publishing PER results and I am proud of the part I have played in that ongoing process. But there is always room for improvement and every year the editors work to streamline the submission and review process. I hope and expect the PERC Proceedings will continue to serve the PER community for many years, and I know that I leave the process in good hands as I end my time as editor.

Laura McCullough
Outgoing Editor
PROGRAM

2007 PHYSICS EDUCATION RESEARCH CONFERENCE
GREENSBORO, NORTH CAROLINA

WEDNESDAY, August 1, 2007

<table>
<thead>
<tr>
<th>When</th>
<th>What</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:30 - 5:30</td>
<td>Bridging Session: Invited Talks & Panel Discussion</td>
</tr>
</tbody>
</table>
| | Making Physics Learning Inviting - A View from Cognitive Science
| | *Janet Kolodner, Georgia Tech* peats |
| | Problem Solving and Learning for Physics Education
| | *Brian Ross, University of Illinois at Urbana-Champaign* |
| | Naive Physics/Savvy Science: Causal Learning in Very Young Children ... and the Rest of Us
| | *Laura Schulz, MIT* |
| 6:00 - 8:00| **Dinner Banquet** |
| | *President: Steve Kanim*
| | *Banquet Speaker: Art Kramer, University of Illinois at Urbana Champaign* |
| | Cognitive Neuroscience Explorations of Cognitive Plasticity & Human Performance |
| 8:00 - 10:00| **Contributed Poster Session** |

THURSDAY, August 2, 2007

<table>
<thead>
<tr>
<th>When</th>
<th>What</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:15 - 9:45</td>
<td>Workshops, Targeted Poster Sessions & Roundtable Discussions- I</td>
</tr>
</tbody>
</table>
| (Parallel Sessions) | Workshop A:
| | Cognitive Analysis of Student Learning Using LearnLab
| | *Rett van de Sande and Kurt VanLohn, University of Pittsburgh* |
| | Workshop B:
| | Physics Learning in the Context of Scaffolded Diagnostic Tasks
| | *Erit Yerushalmi & Bat Sheva Eylon, Weizmann Institute of Science Chandralekha Singh, University of Pittsburgh* |
| | **Targeted Poster Session TP-A**:
| | Experimental Paradigms from Cognitive Science to Learn About Learning
| | *Jose Mestre, University of Illinois, Urbana-Champaign* |
| | **Roundtable Discussion A**:
| | What We Can Learn from Neuroscience from Encoding to n-Coding
| | *Nathaniel Lasry, Harvard University* |
| | *Mark Aulls, McGill University* |
| 9:45 - 10:00| **Break** |
| 10:00 - 12:00| Invited Talks & Panel Discussion (Session II) |
| | Cognitive Science: The Science of the (Nearly) Obvious
| | *Bruce Sherin, Northwestern University* |
| | Facilitating Conceptual Learning Through Analogy and Explanation
| | *Timothy Nokes, University of Pittsburgh* |
| | Socializing Learning and Transfer
<p>| | Dan Schwartz, Stanford University |</p>
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>12:00 - 1:30</td>
<td>Luncheon Banquet, Presider: Steve Kanim</td>
</tr>
<tr>
<td></td>
<td>Workshops, Targeted Poster Sessions & Roundtable Discussions- II</td>
</tr>
<tr>
<td></td>
<td>Workshop B:</td>
</tr>
<tr>
<td></td>
<td>Physics Learning in the Context of Scaffolded Diagnostic Tasks</td>
</tr>
<tr>
<td></td>
<td>Edit Yerushalmi & Bat Sheva Eylon, Weizmann Institute of Science Chandralekha Singh,</td>
</tr>
<tr>
<td></td>
<td>University of Pittsburgh</td>
</tr>
<tr>
<td></td>
<td>Workshop C:</td>
</tr>
<tr>
<td></td>
<td>Publishing & Refereeing Papers in PER</td>
</tr>
<tr>
<td></td>
<td>Leon Hsu, University of Minnesota</td>
</tr>
<tr>
<td></td>
<td>Robert Beichner, North Carolina State University</td>
</tr>
<tr>
<td></td>
<td>Karen Cummings, Southern Connecticut State University</td>
</tr>
<tr>
<td></td>
<td>Janet Kolodner, Georgia Tech</td>
</tr>
<tr>
<td></td>
<td>Laura McCullough, University of Wisconsin, Stout</td>
</tr>
<tr>
<td>1:45 - 3:15</td>
<td>Targeted Poster Session TP-A:</td>
</tr>
<tr>
<td></td>
<td>Experimental Paradigms from Cognitive Science to Learn About Learning</td>
</tr>
<tr>
<td></td>
<td>Jose Mestre, University of Illinois, Urbana-Champaign</td>
</tr>
<tr>
<td></td>
<td>Targeted Poster Session TP-B:</td>
</tr>
<tr>
<td></td>
<td>A Conversation About Models, Modeling, Representations and Cognitive Science</td>
</tr>
<tr>
<td></td>
<td>Brant Hinrichs, Drury University</td>
</tr>
<tr>
<td></td>
<td>Eric Brewe, Florida International University</td>
</tr>
<tr>
<td>3:15 - 3:30</td>
<td>Roundtable Discussion C:</td>
</tr>
<tr>
<td></td>
<td>Experimental Learning in Physics Courses</td>
</tr>
<tr>
<td></td>
<td>Tetyana Antimirova, Ryerson University, Toronto, Ontario</td>
</tr>
<tr>
<td></td>
<td>Workshops, Targeted Poster Sessions & Roundtable Discussions- III</td>
</tr>
<tr>
<td>3:45 - 5:15</td>
<td>Workshop A:</td>
</tr>
<tr>
<td></td>
<td>Cognitive Analysis of Student Learning Using LearnLab</td>
</tr>
<tr>
<td></td>
<td>Brett van de Sande and Kurt VanLehn, University of Pittsburgh</td>
</tr>
<tr>
<td></td>
<td>Workshop C:</td>
</tr>
<tr>
<td></td>
<td>Publishing & Refereeing Papers in PER</td>
</tr>
<tr>
<td></td>
<td>Leon Hsu, University of Minnesota</td>
</tr>
<tr>
<td></td>
<td>Robert Beichner, North Carolina State University</td>
</tr>
<tr>
<td></td>
<td>Karen Cummings, Southern Connecticut State University</td>
</tr>
<tr>
<td></td>
<td>Janet Kolodner, Georgia Tech</td>
</tr>
<tr>
<td></td>
<td>Laura McCullough, University of Wisconsin, Stout</td>
</tr>
<tr>
<td></td>
<td>Roundtable Discussion B:</td>
</tr>
<tr>
<td></td>
<td>Student Views of Learning in a First Semester College Physics Course: A Study Using Q Methodology</td>
</tr>
<tr>
<td></td>
<td>Susan Ramlo, The University of Akron</td>
</tr>
<tr>
<td></td>
<td>Targeted Poster Session TP-B:</td>
</tr>
<tr>
<td></td>
<td>A Conversation About Models, Modeling, Representations and Cognitive Science</td>
</tr>
<tr>
<td></td>
<td>Brant Hinrichs, Drury University</td>
</tr>
<tr>
<td></td>
<td>Eric Brewe, Florida International University</td>
</tr>
</tbody>
</table>
POSTER TITLES AND AUTHORS

Physics Problem Solving Component Skills and Evaluation
Adams, Wendy (wendy.adams@colorado.edu) University of Colorado at Boulder
Wieman, Carl (cwieman@exchange.ubc.ca) University of British Columbia

Different Types of Mathematical Justification in Upper Level Physics
Bing, Thomas J. (tbing@physics.umd.edu) University of Maryland
Gupta, Ayush (ayush@glue.umd.edu) University of Maryland
Redish, Edward F. (redish@umd.edu) University of Maryland

College Students’ Responses to Inquiry-based Group Work in a Reformed Pedagogy Classroom
Alber, Delores (dodiealber@yahoo.com) Southern Illinois University Edwardsville
Puchner, Laurel (lpuchne@siue.edu) Southern Illinois University Edwardsville
Lindell, Rebecca (rlindel@siue.edu) Southern Illinois University Edwardsville

Mapping Student Reasoning about Math- and Physics-oriented Differential Equation Solutions
Black, Katrina E. (katrina.black@umit.maine.edu) University of Maine Department of Physics and Astronomy
Wittmann, Michael C. (wittmann@umit.maine.edu) University of Maine Department of Physics and Astronomy

New Dimensions to Probing Student Thinking about Oscillations in Two Dimensions
Ambrose, Bradley (ambroseb@gvsu.edu) Grand Valley State University

Measuring Student Effort and Engagement in an Introductory Physics Course
Bonham, Scott (scott.bonham@wku.edu) Western Kentucky University

Investigating Peer Scaffolding in Learning and Transfer of Learning Using Teaching Interviews*
Aryal, Bijaya (bijaya@phys.ksu.edu) Kansas State University
Zollman, Dean (dzollman@phys.ksu.edu) Kansas State University

Voltage is the Most Difficult Subject for Students in Physics by Inquiry’s Electric Circuits Module
Bowman, Carol (bowman.79@osu.edu) The Ohio State University at Marion
Aubrecht, Gordon (aubrecht@mps.ohio-state.edu) The Ohio State University at Marion

Comparison of Student Perceptions of Three Different Physics by Inquiry Classes
Aubrecht, Gordon (aubrecht@mps.ohio-state.edu) Dept. of Physics, Ohio State University

Do Introductory Astronomy Texts Promote Higher Order Thinking?
Bracey, Georgia (georgia_bracey@hotmail.com) Southern Illinois University Edwardsville
Lindell, Rebecca (rlindel@siue.edu) Southern Illinois University Edwardsville

Humans, Intentionality, Experience and Tools for Learning: Some Contributions from Post-Cognitive Theories to the Use of Technology in Physics Education.
Bernhard, Jonte (jonbe@itn.liu.se) Engineering Ed. Res. Group, ITN, Campus Norrköping, Linköping University

Improving the Spread of PER-based Instructional Approaches: A Case Study of Dissemination within the Modeling Physics Project
Brewe, Eric (eric.brewe@gmail.com) Hawaii Pacific University
Dancy, Melissa (mhdancy@uncc.edu) University of North Carolina at Charlotte
Henderson, Charles (Charles.Henderson@wmich.edu) Western Michigan University

Scaffolded Reflection: A Chemist's View of Conceptual Change
Bhattacharyya, Gautam (gautamb@clemson.edu) Department of Chemistry, Clemson University

Students’ Difficulties with Concepts Related to Conductors and Insulators
Bilak, Joshua (jdbilak@gmail.com) University of Pittsburgh
Singh, Chandralekha (celsingh@pitt.edu) University of Pittsburgh
The Dynamics of Students’ Behaviors and Reasoning during Collaborative Physics Tutorial Sessions
Conlin, Luke D. (luke.conlin@gmail.com) University of Maryland, College Park
Gupta, Ayush (ayush_umd@yahoo.com) University of Maryland, College Park
Scherr, Rachel E. (rescherr@gmail.com) University of Maryland, College Park
Hammer, David (davidham@umd.edu) University of Maryland, College Park

The Use of Hands-On and Minds-On Modeling Activities in Improving Students’ Understanding of Microscopic Friction
Corpuz, Edgar (ecorpuz@utpa.edu) Department of Geology & Physics, University of Texas -- Pan American
Rebello, N. Sanjay (srebello@phys.ksu.edu) Physics Department, Kansas State University

Problem Solving Behaviors of Math and Science Teachers: Striving for an Answer or for Understanding
D’Angelo, Cynthia (cynthia.dangelo@asu.edu) Arizona State University

From FCI to CSEM to Lawson Test: A Report on Data Collected at a Community College.
Diff, Karim (karim.diff@sfcc.edu) Santa Fe Community College, Gainesville FL
Tache, Nacira (nacira.tache@sfcc.edu) Santa Fe Community College, Gainesville FL

The Effectiveness of a Physical Science by Inquiry Program for K-12 Teachers*
Endorf, Robert (Robert.Endorf@UC.edu) University of Cincinnati
Koenig, Kathleen (kathy.koenig@wright.edu) Wright State University

Spending Time on Design: Does it Hurt Physics Learning?
Etkina, Eugenia (etkina@rci.rutgers.edu) Rutgers University, Graduate School of Education
Van Heuvelen, Alan (alanvan@physics.rutgers.edu) Rutgers University, Department of Physics and Astronomy
Karelina, Anna (anna.karelina@gmail.com) Rutgers University, Graduate School of Education
Ruibal-Villasenor, Maria (ruibal_villasenhor@yahoo.com) Rutgers University, Graduate School of Education

Design and Non-design Labs: Does Transfer Occur?
Karelina, Anna (anna.karelina@gmail.com) Rutgers University, Graduate School of Education
Etkina, Eugenia (etkina@rci.rutgers.edu) Rutgers University, Graduate School of Education
Ruibal-Villasenor, Maria (ruibal_villasenhor@yahoo.com) Rutgers University, Graduate School of Education
Rosengrant, David (rosengra@eden.rutgers.edu) Rutgers University, Graduate School of Education

From Physics to Biology: Helping Students Attain All-terrain Knowledge
Ruibal-Villasenor, Maria (ruibal_villasenhor@yahoo.com) Rutgers University, Graduate School of Education
Etkina, Eugenia (etkina@rci.rutgers.edu) Rutgers University, Graduate School of Education
Karelina, Anna (anna.karelina@gmail.com) Rutgers University, Graduate School of Education
Rosengrant, David (rosengra@eden.rutgers.edu) Rutgers University, Graduate School of Education

Visual Physics: A Case Correlation for Introductory Calculus-based Physics Re-Design
Ezrailson, Cathy (cezrailson@tamu.edu) Texas A&M University
McIntyre, Peter (p-mcintyre@physics.tamu.edu) Texas A&M University
Kamon, Teruki (kamon@physics.tamu.edu) Texas A&M University
Loving, Cathleen C (cloving@tamu.edu) Texas A&M University

Using a Recognition Memory Test to Measure Expert-Novice Differences in the Encoding of Physics Diagrams.
Feil, Adam (adamfeil@uiuc.edu) University of Illinois
Mestre, Jose (mestre@uiuc.edu) University of Illinois

Using Models of Student Thinking to Predict Variability in Responses to Motion Questions
Frank, Brian (bwfrank@physics.umd.edu) University of Maryland
Kanim, Stephen New Mexico State University
Ortiz, Luanna Arizona State University
Exploring Student Application of Deductive Reasoning Resources in a Physics Context
Gaffney, Jon D. H. (jdgaffney@ncsu.edu) North Carolina State University
Weatherford, Shawn A. (sawethe@ncsu.edu) North Carolina State University
Chabay, Ruth W. (rwchabay@ncsu.edu) North Carolina State University

Do They See What We See? College Students Impressions Images of Lunar Phases
Garner, Brian (brgarne@siue.edu) Southern Illinois University Edwardsville
Baker, Erin (ebaker@siue.edu) Southern Illinois University Edwardsville
Lindell, Rebecca (rlindel@siue.edu) Southern Illinois University Edwardsville

Beyond Expert-novice Distinctions: The Problem Solving Characteristics of Physics Majors
Gire, Elizabeth (egire@physics.ucsd.edu) University of California, San Diego
Price, Edward (eprice@csusm.edu) California State University, San Marcos
Jones, Barbara (b2jones@ucsd.edu) University of California, San Diego

Priming Epistemological Framing in Introductory Physics Students
Goertzen, Renee Michelle (goertzen@physics.umd.edu) University of Maryland
Hutchison, Paul (hooch@umd.edu) University of Maryland
Hammer, David (davidham@umd.edu) University of Maryland

Coordination of Mathematical and Physical Resources by Physics Graduate Students
Gupta, Ayush (ayush@umd.edu) Department of Physics, University of Maryland, College Park
Redish, Edward F. (redish@umd.edu) Department of Physics, University of Maryland, College Park
Hammer, David (davidham@umd.edu) Department of Physics, University of Maryland, College Park

A Dynamic Model of Expert and Novice Ontologies in Physics
Redish, Edward F. (redish@umd.edu) Department of Physics, University of Maryland, College Park
Gupta, Ayush (ayush@umd.edu) Department of Physics, University of Maryland, College Park
Hammer, David (davidham@umd.edu) Department of Physics, University of Maryland, College Park

Cognitive Science and Physics Education Research: ‘What We Have Here Is a Failure to Communicate.’
Hake, Richard (rrhake@earthlink.net) Indiana University Emeritus

How Elementary Teachers Use What We Teach
Harlow, Danielle (dharlow@education.ucsb.edu) Gevirtz Graduate School of Education, UC-Santa Barbara

Student Categorization of Problems: An Extension
Harper, Kathleen A (harper.217@osu.edu) Dept. of Physics, The Ohio State University
Hite, Zachary D. First-Year Engineering Program, The Ohio State University
Freuler, Richard J. First-Year Engineering Program, The Ohio State University
Demel, John T. First-Year Engineering Program, The Ohio State University

Students’ Ideas About a Blender and Perceptions of Scaffolding Activities
Hayniecz, Jacquelyn J. (hayniecz@phys.ksu.edu) Kansas State University
Rebello, N. Sanjay (srebello@phys.ksu.edu) Kansas State University

Evaluation of the Physics and Astronomy New Faculty Workshop
Henderson, Charles (Charles.Henderson@wmich.edu) Western Michigan University

Overcoming Undergraduate Student Difficulty in Understanding Curl through Feedback Learning Materials
Jung, Kyesam (kye3@snu.ac.kr) Department of Physics Education in Seoul National University
Lee, Gyoungho (ghlee@snu.ac.kr) Department of Physics Education in Seoul National University

An Explanatory Framework for Popular Physics Lectures
Kapon, Shulamit (shulamit.kapon@weizmann.ac.il) Department of Science Teaching, Weizmann Institute of Science, Israel
Ganiel, Uri (uri.ganiel@weizmann.ac.il) Department of Science Teaching, Weizmann Institute of Science, Israel
Eylon, Bat Sheva (nteylon@wisemail.weizmann.ac.il) Department of Science Teaching, Weizmann Institute of Science, Israel
Out of the Lab and Into the Classroom: An Evaluation of Reflective Dialogue in Andes
Katz, Sandra (katz@pitt.edu) Learning Research and Development Center, University of Pittsburgh
Connelly, John (connelly@pitt.edu) Learning Research and Development Center, University of Pittsburgh

Research-based Practices For Effective Clicker Use
Keller, Christopher (keller.christopher@gmail.com) University of Colorado at Boulder & i>clicker (BFW Publishing)
Finkelstein, Noah (noah.finkelstein@colorado.edu) University of Colorado at Boulder
Pollock, Steven (steven.pollock@colorado.edu) University of Colorado at Boulder
Turpen, Chandra (chandra.turpen@colorado.edu) University of Colorado at Boulder

Categories of Students’ Responses to an Anomalous Section in Symon Mechanics: A Critique of the Conservation Laws
Kim, Eunsun (escherr1@snu.ac.kr) Department of Physics Education, Seoul National University
Lee, Gyoungho (ghlee@snu.ac.kr) Department of Physics Education, Seoul National University

Expert and Novice use of Multiple Representations in Physics Problem Solving
Kohl, Patrick (patkohlcu@gmail.com) University of Colorado, Boulder
Finkelstein, Noah (noah.finkelstein@colorado.edu) University of Colorado, Boulder

Investigating the Source of the Gender Gap in Introductory Physics
Kost, Lauren E. (Lauren.Kost@colorado.edu) Department of Physics, University of Colorado at Boulder
Pollock, Steven J. (Steven.Pollock@colorado.edu) Department of Physics, University of Colorado at Boulder
Finkelstein, Noah D. (Noah.Finkelstein@colorado.edu) Department of Physics, University of Colorado at Boulder

Scientific Inquiry Using a Computer Simulation: Similarities and Differences in Students’ Learning Processes at an International School
Lee, Yu-Fen (yufenlee@buffalo.edu) Department of Learning and Instruction, SUNY at Buffalo
Liu, Xiufeng (xliu5@buffalo.edu) Department of Learning and Instruction, SUNY at Buffalo

Re-conceiving How Teachers Teach, and How Students Learn Physics with Analogies
Lin, Yuhfen (yf@mps.ohio-state.edu) the Ohio State University
Brookes, David (dbrookes@yahoo.com) University of Illinois, Urbana-Champaign

Exploring the Intersections of Personal Epistemology, Public Epistemology, and Affect
Lising, Laura (llising@towson.edu) Towson University

Future Elementary Teachers’ Epistemological Beliefs and Views about the Nature of Science before and after a ’Reformed’ Conceptual Physics Course
Mamolo, Charles (cbmamolo@phys.ksu.edu) Physics Department, Kansas State University
Rebello, N. Sanjay (srebello@phys.ksu.edu) Physics Department, Kansas State University

Students’ Perceptions of Case-Reuse Based Problem Solving in Algebra-Based Physics
Mateycik, Fran (mateyf@phys.ksu.edu) Kansas State University
Hrepic, Zdeslav (zhrepic@fhsu.edu) Fort Hays State University
Jonassen, David (jonassen@missouri.edu) University of Missouri, Columbia
Rebello, N. Sanjay (srebello@phys.ksu.edu) Kansas State University

Investigating Students’ Ideas about Wavefront Aberrometry*
McBride, Dyan (dyanm@k-state.edu) Kansas State University
Zollman, Dean (dzollman@phys.ksu.edu) Kansas State University

Students Creating Mathematical Meaning in Mechanics: Signs in Scalar Equations
McCann, Kate (katie.mccann@umit.maine.edu) University of Maine Center for Science and Mathematics Education Research
Wittmann, Michael C. (wittmann@umit.maine.edu) University of Maine Department of Physics and Astronomy
A Preliminary Investigation of College Astronomy Students Understanding of Spectroscopy
McGarrahan, Andrew (amcgarr@siue.edu) Southern Illinois University Edwardsville
Garner, Brian (brgarne@siue.edu) Southern Illinois University Edwardsville
Nepf, Candice (c_milr@yahoo.com) Edwardsville High School
Lindell, Rebecca (rlindel@siue.edu) Southern Illinois University Edwardsville

Learning to Think Like Scientists with the PET Curriculum
Otero, Valerie (valerie.oter@colorado.edu) University of Colorado at Boulder
Gray, Kara (kara.gray@colorado.edu) University of Colorado at Boulder

Disseminating the Results of Cognitive Studies through Graduate Teaching Assistant Training
Focusing on Knowledge for Teaching
Pellathy, Stephen (pellathy@pitt.edu) University of Pittsburgh

Using Clickers in Upper-division Physics Courses: What do Students Think?
Perkins, Katherine (Katherine.Perkins@colorado.edu) University of Colorado at Boulder
Turpen, Chandra University of Colorado, Boulder
Finkelstein, Noah (noah.finkelstein@colorado.edu) University of Colorado at Boulder
Keller, Chris University of Colorado, Boulder

Salience of Representations and Analogies in Physics: How do Students Know What to Know?
Podolefsky, Noah (noah.podolefsky@colorado.edu) University of Colorado at Boulder
Finkelstein, Noah (noah.finkelstein@colorado.edu) University of Colorado at Boulder

A Longitudinal Study of the Impact of Curriculum on Conceptual Understanding in E&M
Pollock, Steven (steven.pollock@colorado.edu) University of Colorado, Boulder

Will a Student Construct a Free-body Diagram to Solve this Problem?
Rosengrant, David (rosengra@eden.rutgers.edu) Department of Physics and Biology, Kennesaw State University
Etkina, Eugenia (etkina@rci.rutgers.edu) Graduate School of Education, Rutgers, The State University of New Jersey
Van Heuvelen, Alan (alanvan@physics.rutgers.edu) Physics Department, Rutgers, The State University of New Jersey

Constructing Models in Quantum Mechanics
McKagan, S. B. (mckagan@colorado.edu) University of Colorado

An Exploration of Student Understanding of the Connection between Particulate Models and Macroscopic Properties of Gases
Monteyne, Kereen (kmonteyne@fullerton.edu) California State University Fullerton
Gonzalez, Barbara (bgonzalez@fullerton.edu) California State University Fullerton
Loverude, Michael (mloverude@fullerton.edu) California State University Fullerton

Peer-assessment of Homework Using Rubrics
Murthy, Sahana (sahana@mit.edu) Massachusetts Institute of Technology, Cambridge, MA

The Cognitive Structure of Beginning Secondary Physics Teachers' Content Knowledge: A Nature of Physics Construct
Neadkraze, Jennifer J. (Jennifer.Neakrase@asu.edu) Arizona State University
Luft, Julie (Julie.Luft@asu.edu) Arizona State University
Roehrig, Gillian (roehr013@umn.edu) University of Minnesota

Using Artificial Neural Networks to Predict How Students Answer Questions in Physics
Ortiz, Edgardo (elortiz@physics.umass.edu) Department of Physics, Univ. of Massachusetts Amherst
Beatty, Ian (beatty@sri.umass.edu) Scientific Reasoning Research Institute, Univ. of Massachusetts Amherst
Dufresne, Robert (dufresne@physics.umass.edu) Scientific Reasoning Research Institute, Univ. of Massachusetts Amherst
Gerace, William (gerace@physics.umass.edu) Department of Physics, Univ. of Massachusetts Amherst

Learning to Think Like Scientists with the PET Curriculum
Otero, Valerie (valerie.oter@colorado.edu) University of Colorado at Boulder
Gray, Kara (kara.gray@colorado.edu) University of Colorado at Boulder

Disseminating the Results of Cognitive Studies through Graduate Teaching Assistant Training
Focusing on Knowledge for Teaching
Pellathy, Stephen (pellathy@pitt.edu) University of Pittsburgh

Using Clickers in Upper-division Physics Courses: What do Students Think?
Perkins, Katherine (Katherine.Perkins@colorado.edu) University of Colorado at Boulder
Turpen, Chandra University of Colorado, Boulder
Finkelstein, Noah (noah.finkelstein@colorado.edu) University of Colorado at Boulder
Keller, Chris University of Colorado, Boulder

Salience of Representations and Analogies in Physics: How do Students Know What to Know?
Podolefsky, Noah (noah.podolefsky@colorado.edu) University of Colorado at Boulder
Finkelstein, Noah (noah.finkelstein@colorado.edu) University of Colorado at Boulder

A Longitudinal Study of the Impact of Curriculum on Conceptual Understanding in E&M
Pollock, Steven (steven.pollock@colorado.edu) University of Colorado, Boulder

Will a Student Construct a Free-body Diagram to Solve this Problem?
Rosengrant, David (rosengra@eden.rutgers.edu) Department of Physics and Biology, Kennesaw State University
Etkina, Eugenia (etkina@rci.rutgers.edu) Graduate School of Education, Rutgers, The State University of New Jersey
Van Heuvelen, Alan (alanvan@physics.rutgers.edu) Physics Department, Rutgers, The State University of New Jersey

Constructing Models in Quantum Mechanics
McKagan, S. B. (mckagan@colorado.edu) University of Colorado

An Exploration of Student Understanding of the Connection between Particulate Models and Macroscopic Properties of Gases
Monteyne, Kereen (kmonteyne@fullerton.edu) California State University Fullerton
Gonzalez, Barbara (bgonzalez@fullerton.edu) California State University Fullerton
Loverude, Michael (mloverude@fullerton.edu) California State University Fullerton

Peer-assessment of Homework Using Rubrics
Murthy, Sahana (sahana@mit.edu) Massachusetts Institute of Technology, Cambridge, MA

The Cognitive Structure of Beginning Secondary Physics Teachers' Content Knowledge: A Nature of Physics Construct
Neadkraze, Jennifer J. (Jennifer.Neakrase@asu.edu) Arizona State University
Luft, Julie (Julie.Luft@asu.edu) Arizona State University
Roehrig, Gillian (roehr013@umn.edu) University of Minnesota

Using Artificial Neural Networks to Predict How Students Answer Questions in Physics
Ortiz, Edgardo (elortiz@physics.umass.edu) Department of Physics, Univ. of Massachusetts Amherst
Beatty, Ian (beatty@sri.umass.edu) Scientific Reasoning Research Institute, Univ. of Massachusetts Amherst
Dufresne, Robert (dufresne@physics.umass.edu) Scientific Reasoning Research Institute, Univ. of Massachusetts Amherst
Gerace, William (gerace@physics.umass.edu) Department of Physics, Univ. of Massachusetts Amherst

Comparing FCI Normalized Gain, Pre-instruction Scores, and Scientific Reasoning Ability for PER-based and Traditional Lecture Instruction in Introductory Mechanics Classes
Saul, Jeff (saulj@fiu.edu) Florida International University Department of Physics
Pamela, Priscilla (AArcas@aol.com) Florida International University Department of Physics
Kramer, Laird (kramerr@fiu.edu) Florida International University Department of Physics
O’Brien, George (obrieng@fiu.edu) Florida International University Department of Science Education

FCI-based Multiple Choice Test for Investigating Students’ Representational Coherence
Savinainen, Antti (antti.savinainen@kuopio.fi) Kuopio Lyseo High School/University of Jyväskylä
Nieminen, Pasi (pakaniem@cc.jyu.fi) University of Jyväskylä
Viiri, Jouni (Jouni.Viiri@edu.jyu.fi) University of Jyväskylä
Korkea-aho, Jukka (juenkork@cc.jyu.fi) University of Jyväskylä

Factors Influencing Student Models of the Lorentz Force on a Charged Particle
Scaife, Thomas (scaife.7@osu.edu) The Ohio State University Department of Physics
Heckler, Andrew (heckler@mps.ohio-state.edu) The Ohio State University Department of Physics

Multiple Modes of Reasoning in Physics Problem-solving, with Implications for Instruction
Schuster, David (david.schuster@wmich.edu) Western Michigan University
Undreiu, Adriana (adriana.undreiu@wmich.edu) Western Michigan University
Adams, Betty (basmada@aol.com) Western Michigan University

Explicit Reflection in an Introductory Physics Course
Scott, Michael (muscott1@uiuc.edu) University of Illinois at Urbana-Champaign
Stelzer, Tim (tstelzer@uiuc.edu) University of Illinois at Urbana-Champaign
Gladding, Gary (geg@uiuc.edu) University of Illinois at Urbana-Champaign

Introducing Ill-structured Problems in Physics Recitations
Shekoyan, Vazgen (vazgen@physics.rutgers.edu) Rutgers, The State University of New Jersey
Etkina, Eugenia (etkina@rci.rutgers.edu) Rutgers, The State University of New Jersey

Analyzing the Force and Motion Conceptual Evaluation using Model Analysis
Smith, Trevor I. (trevor.i.smith@umit.maine.edu) University of Maine Center for Science and Mathematics Education Research
Wittmann, Michael C. (wittmann@umit.maine.edu) University of Maine Department of Physics and Astronomy
Carter, Tom (Cartert@cdnet.cod.edu) College of Dupage

Comparing Cluster Analysis and Traditional Analysis Methods in PER
Springuel, R. Padraic (r.springuel@umit.maine.edu) University of Maine Department of Physics and Astronomy
Wittmann, Michael C. (wittmann@umit.maine.edu) University of Maine Department of Physics and Astronomy
Thompson, John R. (john.thompson@umit.maine.edu) University of Maine Department of Physics and Astronomy

Symbols: Weapons of Math Destruction
Torigoe, Eugene (torigoe@uiuc.edu) University of Illinois at Urbana-Champaign
Gladding, Gary (geg@uiuc.edu) University of Illinois at Urbana-Champaign

Understanding Faculty Use of Peer Instruction
Turpen, Chandra (Chandra.Turpen@colorado.edu) University of Colorado, Boulder
Finkelstein, Noah University of Colorado, Boulder
Keller, Chris University of Colorado, Boulder

Comparing Student Use of Mathematical and Physical Vector Representations
Van Deventer, Joel (joel.vandeventer@umit.maine.edu) University of Maine Center for Science and Mathematics Education Research
Wittmann, Michael C. (wittmann@umit.maine.edu) University of Maine Department of Physics and Astronomy

Optimizing Student Learning of Evaluation Abilities
Warren, Aaron (awarren@pnc.edu) Purdue University - North Central

Ausbeler and Piaget: A Contemporary Investigation
Williams, Karen (kwilliams@mac.com) East Central University
Marek, Edmund University of Oklahoma
Using Students’ Design Tasks to Develop Scientific Abilities
Zou, Xueli (xzou@csuchico.edu) California State University, Chico

Student Spatial Reasoning and Physics Problem Solving: A Preliminary Study
De Leone, Charles J. (cdeleone@csusm.edu) California State University, San Marcos
Gire, Elizabeth. University of California, San Diego

Pedagogical Tools to Help Learners Organize Their Ideas
Hamed, Kastro (kastro@utep.edu) University of Texas at El Paso

Assessing Student Expertise in Physics with Isomorphic Problems
Singh, Chandralekha (celsingh@pitt.edu) University of Pittsburgh

Continued Discussion of the Correlation Coefficient and R2-Value Survey
Marx, Jeffrey (jmarx@mcdaniel.edu) McDaniel College, Westminster, MD

Why is Physics Hard?
Pyper, Brian A. (pyperb@byui.edu) BYU-Idaho
Humpherys, Candice BYU-Idaho

An Analysis of Asynchronous Online Homework Discussions in Introductory Physics Courses
Kortemeyer, Gerd (korte@lite.msu.edu) Michigan State University

Transfer of Learning in Medical Image Reconstruction: Group Teaching Interviews
Kalita, Spartak (spartak@phys.ksu.edu) Kansas State University
Zollman, Dean, Kansas State University

Comparing Student Understanding of Physics and Mathematics in P-V Diagrams
Evan B. Pollock, Department of Physics and Astronomy and Center for Science and Mathematics Education Research University of Maine, Orono, ME
John R. Thompson, Brandon R. Bucy, Donald B. Mountcastle, Department of Physics and Astronomy and Center for Science and Mathematics Education Research University of Maine, Orono, ME

Student Estimates of Probability and Uncertainty in Advanced Laboratory and Statistical Physics Courses
Donald B. Mountcastle, Department of Physics and Astronomy and Center for Science and Mathematics Education Research University of Maine, Orono, ME
Brandon R. Bucy, and John R. Thompson, Department of Physics and Astronomy and Center for Science and Mathematics Education Research University of Maine, Orono, ME

Comparing Advanced Undergraduate Reasoning about Entropy across Disciplines
Brandon R. Bucy, Department of Physics and Astronomy and Center for Science and Mathematics Education Research University of Maine, Orono, ME
John R. Thompson, and Donald B. Mountcastle, Department of Physics and Astronomy and Center for Science and Mathematics Education Research University of Maine, Orono, ME