2005
PHYSICS EDUCATION
RESEARCH
CONFERENCE
Previous Proceedings in the Series of Physics Education Research Conferences

<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Publisher</th>
<th>ISBN</th>
</tr>
</thead>
</table>

To learn more about this title, or the AIP Conference Proceedings Series, please visit the webpage http://proceedings.aip.org
CONTENTS

Preface .. vii
Program .. ix
Contributed Posters .. xi

INVITED PAPERS

Evaluating a Model of Research-Based Practices for Teacher Preparation in a Physics Department: Colorado PhysTEC ... 3
N. Finkelstein, C. Turpen, S. Pollock, M. Dubson, S. Iona, C. Keller, and V. Otero
Increasing Interest and Awareness about Teaching in Science Undergraduates .. 7
C. Singh, L. Moin, and C. Schunn
The Challenges of Designing and Implementing Effective Professional Development for Out-of-Field High School Physics Teachers .. 11
L. T. Escalada and J. K. Moeller
Pathway — Using a State-of-the-Art Digital Video Database for Research and Development in Teacher Education ... 15
B. Adrian, D. Zollman, and S. Stevens
Development of a Standards-Based Integrated Science Course for Elementary Teachers .. 19
E. Malina, D. Plunk, and R. S. Lindell
Meeting the Needs of Our Future and In-Service Teachers: The Development and Implementation of a PER-Based Course to Teach Instructional Strategies in Astronomy .. 23
R. S. Lindell, D. Franke, E. Peake, T. Withee, and T. Foster
The Impact of Teacher Quality Grants on Long-Term Professional Development of Physical Science Teachers .. 27
M. L. Urquhart and K. M. Bober
Ohio Teacher Professional Development in the Physical Sciences ... 31
J. Cervenec and K. A. Harper

PEER-REVIEWED PAPERS

College Students’ Transfer from Calculus to Physics .. 37
L. Cui, N. S. Rebello, and A. G. Bennett
Evidence of Problem-Solving Transfer in Web-Based Socratic Tutor ... 41
R. Warnakulasooriya, D. J. Palazzo, and D. E. Pritchard
Is Instructional Emphasis on the Use of Non-Mathematical Representations Worth the Effort? 45
C. J. De Leone and E. Gire
Case Study: Students’ Use of Multiple Representations in Problem Solving .. 49
D. Rosengrant, A. Van Heuvelen, and E. Etkina
Talking to Learn Physics and Learning to Talk Physics ... 53
D. B. Harlow and V. K. Otero
Do Our Words Really Matter? Case Studies from Quantum Mechanics .. 57
D. T. Brookes and E. Etkina
Student Difficulties in Understanding Probability in Quantum Mechanics .. 61
H. Sadaghiani and L. Bao
Exploring Student Understanding of Energy through the Quantum Mechanics Conceptual Survey 65
S. B. McKagan and C. E. Wieman
Assessing and Improving Student Understanding of Quantum Mechanics .. 69
C. Singh
Examining the Evolution of Student Ideas about Quantum Tunneling .. 73
J. T. Morgan and M. C. Wittmann
Assessing Student Understanding of Partial Derivatives in Thermodynamics ... 77
J. R. Thompson, B. R. Bucy, and D. B. Mountcastle
What is Entropy? Advanced Undergraduate Performance Comparing Ideal Gas Processes 81
B. R. Bucy, J. R. Thompson, and D. B. Mountcastle
Preface

This past summer, 210 Physics Education Researchers came together in Salt Lake City, Utah for the 2005 Physics Education Research Conference. The organizing theme of the conference was, “Connecting Physics Education Research to Teacher Education at All Levels: K-20.” Kastro Hamed, Rebecca Lindell, and N. Sanjay Rebello did a fabulous job arranging this meeting. They gathered some great physics educations researchers to deliver invited talks and lead targeted poster sessions, workshops, and roundtable discussions. And, as always, there was a host of interesting and insightful contributed posters representing a broad range of interests within the field. Many of those presentations are represented in this edition of the Proceedings. Specifically, you will find eight manuscripts from invited sessions and thirty papers that successfully passed our peer-review process.

As always, we want to openly thank PER community members who magnanimously donated their time to review papers. This year sixty-five people deserve our gratitude: Wendy Adams, Brad Ambrose, Gordon Aubrecht, Lei Bao, Joe Beuckman, Scott Bonham, David Brookes, Kerry Browne, Warren Christensen, Eleanor Close, Hunter Close, Edgar Corpuz, Sean Courtney, Andrew Crouse, Karen Cummings, Melissa Dancy, Charles De Leone, Dedra Demaree, Dewey Dykstra, Judith Edgington, Robert Endorf, Eugenia Etkina, Noah Finkelstein, Peter Fletcher, Scott Franklin, Gary Gladding, David Hammer, Danielle Harlow, Kathy Harper, Andrew Heckler, Charles Henderson, Brant Hinrichs, Zdeslav Hrepic, Leon Hsu, Steve Kanim, Yeounsoo Kim, Patrick Kohl, Yuhfen Lin, Rebecca Lindell, Beth Lindsey, Michael Loverude, David Maloney, Sam McKagan, Jeffrey Morgan, Sahana Murthy, Luanna Ortiz, Valerie Otero, K.K. Perkins, Noah Podolefsky, Steven Pollock, Wendell Potter, N. Sanjay Rebello, David Rosengrant, Mel Sabella, Homeyra Sadaghiani, Chandralekha Singh, John Thompson, Jerry Touger, Alan Van Heuvelen, Stamatis Vokos, DJ Wagner, Rasil Warnakulasooriya, Carl Weiman, Gary White, and Michael Wittmann.

Again, it was a great conference, and we look forward to seeing you all next summer in Syracuse, New York.

Jeff Marx
Outgoing Editor
PROGRAM

2005 PHYSICS EDUCATION RESEARCH CONFERENCE
SALT LAKE CITY, UTAH

WEDNESDAY, AUGUST 10TH

5:45 - 6:45 Keynote Address
 Bridging the Gap: Preparing K-12 Teachers to Teach Physics and Physical Science
 Lillian C. McDermott

6:50 - 8:00 Dinner Banquet

8:00 - 10:00 Contributed Poster Session

THURSDAY, AUGUST 11

8:00 - 8:15 Orientation

8:15 - 9:45 Workshops (W) and Targeted Poster Sessions (TP) I
 W-A: Important Issues in Preparing Graduate Teaching Assistants
 Kathleen Harper, The Ohio State University

 W-B: Model Analysis: Theoretical Basis and Methodology for Developing Effective Assessment
 Lei Bao & Neville Reay, The Ohio State University

 W-D: Physics by Inquiry: Preparing K-12 Teachers to Teach Physics and Physical Science
 Donna Messina, Paula Heron, Peter Shaffer, and Lillian C. McDermott, University of Washington

 TP-A: Goals & Assessment in the PhysTEC Project: Drawing from Research and Systematic Self-assessment to Promote Inquiry-Oriented Teacher Education
 Laura Lising, Towson University, Noah Finkelstein, University of Colorado, Bob Poel, Western Michigan University, Ted Hodapp, American Physical Society

 TP-B: Research on Improving Content and Pedagogical Knowledge of Science Teachers
 Chandralekha Singh, University of Pittsburgh

9:45 - 10:15 Break
10:15 - 12:15 Invited Talks & Panel Discussion

Repositioning Ourselves from “Knowers” to “Learners:” Formative Assessment, Vygotsky, and Teacher Preparation
Valerie Otero, University of Colorado

The Physics Teacher Education Coalition: Results, Directions, Initiatives
Ted Hodapp, Hamline University

Evaluating Activity-based Teacher Workshops
Ron Thornton, Tufts University

Panel Discussion
Discussant: Kastro M. Hamed, University of Texas at El Paso

12:15 - 1:45 Luncheon Banquet

Teacher Quality Issues in Science Education and Research Opportunities
Dr. Harold Himmelfarb, U.S. Department of Education

1:45 - 3:15 Workshops (W) and Targeted Poster Sessions (TP) II

W-A: Important Issues in Preparing Graduate Teaching Assistants
Kathleen Harper, The Ohio State University

W-C: Piaget’s Workshop
Dewey Dykstra, Boise State University

W-D: Physics by Inquiry: Preparing K-12 Teachers to Teach Physics and Physical Science
Donna Messina, Paula Heron, Peter Shaffer, and Lillian C. McDermott, University of Washington

TP-A: Goals & Assessment in the PhysTEC Project: Drawing from Research and Systematic Self-assessment to Promote Inquiry-Oriented Teacher Education
Laura Lising, Towson University, Noah Finkelstein, University of Colorado, Bob Poel, Western Michigan University, Ted Hodapp, American Physical Society

TP-C: The Changing Face of Teacher Training: Creating Well-Qualified Physics and Astronomy Educators in the Age of No Child Left Behind
Rebecca Lindell, Southern Illinois University Edwardsville

3:15 - 3:45 Break

3:45 - 5:15 Workshops (W) and Targeted Poster Sessions (TP) III

W-C: Piaget’s Workshop
Dewey Dykstra, Boise State University

TP-B: Research on Improving Content and Pedagogical Knowledge of Science Teachers
Chandralekha Singh, University of Pittsburgh

TP-C: The Changing Face of Teacher Training: Creating Well-Qualified Physics and Astronomy Educators in the Age of No Child Left Behind
Rebecca Lindell, Southern Illinois University Edwardsville
CONTRIBUTED POSTERS

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problem solving skills and evidence of their independence and transferability</td>
<td>Wendy Adams and Carl Wieman, University of Colorado</td>
</tr>
<tr>
<td>Elementary education students’ concepts of force and motion</td>
<td>Rhett Allain, Southeastern Louisiana University</td>
</tr>
<tr>
<td>A comparison of student understanding of seasons using inquiry and didactic teaching methods</td>
<td>Paul Ashcraft, Pennsylvania State University</td>
</tr>
<tr>
<td>Searching for Common and Optimum Knowledge Acquisition Paths in learning Lunar Phases</td>
<td>Joseph Beuckman and Rebecca Lindell, Southern Illinois University Edwardsville; Andrew Heckler, The Ohio State University</td>
</tr>
<tr>
<td>What is working in our introductory labs?</td>
<td>Jennifer Blue, Miami University</td>
</tr>
<tr>
<td>Do our words really matter? Case studies from Quantum Mechanics</td>
<td>David Brookes and Eugenia Etkina, Rutgers University</td>
</tr>
<tr>
<td>Physics Education Research: Making Inroads with an Entrenched Physics Teacher at Vacaville High School</td>
<td>Austin Calder, University of California, Davis</td>
</tr>
<tr>
<td>To Extract or Not To Extract? That Is The Question</td>
<td>Alice D. Churukian, Concordia College; Paula V. Engelhardt, Tennessee Tech. University</td>
</tr>
<tr>
<td>Scaffolding Students’ Microscopic Modeling of Friction in Teaching Interviews: A Case Study with Two Students</td>
<td>Edgar Corpuz and N. Sanjay Rebello, Kansas State University</td>
</tr>
<tr>
<td>College Students’ Transfer from Calculus to Physics</td>
<td>Lili Cui, N. Sanjay Rebello, and Andrew G. Bennett, Kansas State University</td>
</tr>
<tr>
<td>Understanding change in physics education: Identifying old barriers and new directions</td>
<td>Melissa Dancy, University of North Carolina, Charlotte; Charles Henderson, Western Michigan University</td>
</tr>
<tr>
<td>Gender in the student laboratory: An exploration of students experiences of doing laboratory work in physics</td>
<td>Anna Danielsson, Uppsala University</td>
</tr>
<tr>
<td>Is instructional emphasis on the use of non-mathematical representations worth the effort?</td>
<td>Charles De Leone, California State University, San Marcos; Elizabeth Gire, University of California, San Diego</td>
</tr>
<tr>
<td>Assessing ISLE labs as an enhancement to traditional large-lecture courses at the Ohio State University</td>
<td>Dedra Demaree, Yuhfen Lin, Gordon Aubrecht, and Lei Bao, The Ohio State University</td>
</tr>
<tr>
<td>Designing an Assessment Tool for Matter & Interactions Mechanics Course</td>
<td>Lin Ding, Ruth Chabay, and Bruce Sherwood, North Carolina State University</td>
</tr>
<tr>
<td>A Preliminary Study of the Effectiveness of Different Recitation Teaching Methods</td>
<td>Robert Endorf, University of Cincinnati; Kathleen Koenig; Greg Braun, Xavier University</td>
</tr>
</tbody>
</table>
Design labs: Students’ expectations and reality
Eugenia Etkina and Sahana Murthy, Rutgers University

A Methodological Framework for Researcher and Teacher Professional Development
Peter R. Fletcher and N. Sanjay Rebello, Kansas State University

Science Teacher Self-Efficacy Beliefs and their Impact on Effective Teaching
Eric. A Hagedorn, University of Texas at El Paso

Making words work: The simultaneous construction of concepts and discourse
Danielle Harlow and Valerie Otero, University of Colorado

Physics Faculty and Educational Researchers: Divergent Expectations as Barriers to the Diffusion of Innovations
Charles Henderson, Western Michigan University; Melissa Dancy, University of North Carolina, Charlotte

Developing an inquiry-based physical science course for preservice elementary teachers
Zdeslav Hrepic and Paul Adams, Fort Hays State University; Jason Zeller; Nancy Talbott; Germaine Taggart and Lanee Young, Fort Hays State University

Investigating students’ ideas about X-rays and development of teaching materials for a medical physics course
Spartak Kalita and Dean Zollman, Kansas State University

Tricky calorimetry: Making sense of the real world
Anna Karelina, Eugenia Etkina, and Sahana Murthy, Rutgers University; Maria Rosario; Ruibal Villasenor

Assessing the effectiveness of a computer simulation in conjunction with Tutorials in Introductory Physics in undergraduate physics recitations
Christopher Keller, Noah Finkelstein, Katherine Perkins and Steven Pollock, University of Colorado

Students’ cognitive conflict and conceptual change in a PBI class
Yeounsoo Kim, Lei Bao, and Omer Acar, The Ohio State University

The effect of educational environment on representational competence in introductory physics
Patrick Kohl and Noah Finkelstein, University of Colorado

How students form conclusions in the student laboratory
Rebecca Kung, Uppsala University

Student assessment of laboratory in introductory physics courses
Yuhfen Lin and Dedra Demaree, The Ohio State University; Xueli Zou, California State University, Chico; Gordon Aubrecht, The Ohio State University

Student Learning and Dynamic Transfer while Interacting with “Constructing Physics Understanding” (CPU) Curriculum: A Case Study
Charles Mamolo, Peter R. Fletcher, and N. Sanjay Rebello, Kansas State University

Strengthening the Connection between Coursework and Real-World Phenomena
Jeff Marx, McDaniel College; Bill Knouse

A Quantum Mechanics Conceptual Survey
Sarah McKagan and Carl Wieman, University of Colorado

Investigations of Student Reasoning in Thermochemistry
David E. Meltzer and Thomas J. Greenbowe, Iowa State University
A more complete way to follow development of student ideas in mechanics
Maximiliano Montenegro, Gordon Aubrech, and Lei Bao, The Ohio State University

Examining the Evolution of Student Ideas About Quantum Tunneling
Jeffrey Morgan and Michael Wittmann, University of Maine

A replication study of the use of concentration analysis to characterize student response patterns on a multiple-choice concept test in mechanics
Jennifer J. Neakrase and Luanna G. Ortiz, Arizona State University

Investigating the reliability of the MPEX survey
Christopher Omasits and DJ Wagner, Grove City College

Research-based laboratories for introductory physics courses
Luanna Ortiz, Arizona State University; Michael Loverude, California State University, Fullerton; Stephen Kanim, New Mexico State University; Brian Frank, Arizona State University

Towards characterizing the relationship between students’ self-reported interest in and their surveyed beliefs about physics
Katherine Perkins, Mindy Gratny, Kansas State University; Wendy Adams, Noah Finkelstein, and Carl Wieman, University of Colorado

Analogical Scaffolding: A Research Based Model of Learning Abstract Ideas in Physics
Noah Podolefsky and Noah D. Finkelstein, University of Colorado

Transferring Transformations: Learning Gains, Student Attitudes, and the Impacts of Multiple Instructors in Large Lecture Courses
Steven Pollock, University of Colorado

Movie Physics: Transfer to the Real World
Carina M. Polter, Peter R. Fletcher, and N. Sanjay Rebello, Kansas State University

Automated Instrument for Observing and Recording Behaviors Over Time of Large Numbers of Students
Wendell Potter, University of California, Davis

Teacher Researcher Professional Development: PER Case study Kansas State University
N. Sanjay Rebello and Peter Fletcher, Kansas State University

Case Study: Students’ Use of Multiple Representations
David Rosengrant, Alan Van Heuvelen, and Eugenia Etkina, Rutgers University

Enhancing High School Physics Instruction through the Physics Van Inservice Institute
Mel Sabella, Chicago State University; Gloria Pritikin

Students’ Conceptual and Mathematical Difficulties with Quantum Wave Functions
Homeyra Sadaghian and Lei Bao, The Ohio State University

Implementation of the Physics for Elementary Teachers Curriculum, a New Faculty’s Perspective
Steven Sahyun, University of Wisconsin, Whitewater

Local consistency without global consistency in intermediate mechanics students
Eleanor C. Sayre and Michael C. Wittmann, University of Maine

Teaching General Physics in an accelerated course format
Nataliya Serdyukova, National University
Preliminary Testing of Physics Problem-Solving Self-Efficacy Instrument
Kimberly Shaw, Southern Illinois University Edwardsville

Interactive Video Lectures in a Distance Learning Course for In-Service High School Teachers
Bruce Sherwood and Ruth Chabay, North Carolina State University

Improving Student Understanding of Quantum Mechanics
Chandralekha Singh, University of Pittsburgh

Student Understanding of Partial Differentiation in Thermal Physics
John Thompson, Brandon Bucy, and Donald Mountcastle, University of Maine

Evidence of knowledge transfer in web-based physics tutor
Rasil Warnakulasooriya and David Pritchard, Massachusetts Institute of Technology

Student Self-Evaluation & Problem-Solving Performance
Aaron Warren and Alan Van Heuvelen, Rutgers University

Different Views on Inquiry, A Survey of Science and Mathematics Methods Course Instructors
Thomas Withee and Rebecca Lindell, Southern Illinois University Edwardsville

How general education students understand wave functions in quantum physics
Michael C. Wittmann, Jeffrey T. Morgan, and Katrina Black, University of Maine; R. Padraic Springuel

A Journey through Physics by Inquiry: From Student to Student Teacher
Maria Zahran and Gordon Aubrecht, II, The Ohio State University

What is Entropy? Assessing Advanced Undergraduate Performance Comparing Ideal Gas Processes
Brandon R. Bucy, John R. Thompson, and Donald B. Mountcastle, University of Maine

Building a community for physics education research
Vincent H. Kuo and Robert J. Beichner, North Carolina State University

(Not) Motivating Changes in Student Behavior with Extra Credit
Scott Bonham, Western Kentucky University