To learn more about the AIP Conference Proceedings Series, please visit http://proceedings.aip.org
Table of Contents

Preface: 2012 Physics Education Research Conference
N. Sanjay Rebello
1

Conference Overview
3

INVITED PAPERS (NOT PEER REVIEWED)

Building classroom and organizational structure around positive cultural values
Badr F. Albanna, Joel C. Corbo, Dimitri R. Dounas-Frazer, Angela Little, and Anna M. Zaniewski
7

Critical classroom structures for empowering students to participate in science discourse
Shelly N. Belleau and Valerie K. Otero
11

A framework for assessing learning assistants’ reflective writing assignments
Geraldine L. Cochran, David T. Brookes, and Laird H. Kramer
15

Supporting and sustaining the holistic development of students into practicing physicists
Elizabeth Gire, Mary Bridget Kustusch, and Corinne Manogue
19

Design guidelines for adapting scientific research articles: An example from an introductory level, interdisciplinary program on soft matter
Elon Langbeheim, Samuel A. Safran, and Edit Yerushalmi
23

Establishing reliability and validity: An ongoing process
Rebecca Lindell and Lin Ding
27

Initial replication results of learning assistants in university physics
Paul M. Miller, Jeffrey S. Carver, Aniketa Shinde, Betsy Ratcliff, and Ashley N. Murphy
30

Cultural toolkits in the urban physics learning community
Mel S. Sabella and Andrea Gay Van Duzor
34

Instructional changes based on cogenerative physics reform
Natan Samuels, Eric Brewe, and Laird Kramer
38

Student predictions of functional but incomplete example programs in introductory calculus-based physics
Shawn Weatherford and Ruth Chabay
42
<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Understanding student computational thinking with computational modeling</td>
<td>John M. Aiken, Marcos D. Caballero, Scott S. Douglas, John B. Burk, Erin M. Scanlon, Brian D. Thoms, and Michael F. Schatz</td>
<td>46</td>
</tr>
<tr>
<td>Using scientists' notebooks to foster authentic scientific practices</td>
<td>Leslie J. Atkins and Irene Y. Salter</td>
<td>50</td>
</tr>
<tr>
<td>Research-based course materials and assessments for upper-division electrodynamics (E&M II)</td>
<td>Charles Baily, Michael Dubson, and Steven J. Pollock</td>
<td>54</td>
</tr>
<tr>
<td>Students' difficulties in interpreting the torque vector in a physical situation</td>
<td>Pablo Barniol, Genaro Zavala, and Carlos Hinojosa</td>
<td>58</td>
</tr>
<tr>
<td>Introduction of studio physics teaching in Panama</td>
<td>Azael Barrera-Garrido</td>
<td>62</td>
</tr>
<tr>
<td>The graduate research field choice of women in academic physics and astronomy: A pilot study</td>
<td>Ramón S. Barthelemy, Megan L. Grunert, and Charles R. Henderson</td>
<td>66</td>
</tr>
<tr>
<td>Improving physics instruction by analyzing video games</td>
<td>Ian D. Beatty</td>
<td>70</td>
</tr>
<tr>
<td>Multidimensional student skills with collaborative filtering</td>
<td>Yoav Bergner, Saif Rayyan, Daniel Seaton, and David E. Pritchard</td>
<td>74</td>
</tr>
<tr>
<td>Self-efficacy in introductory physics in students at single-sex and coeducational colleges</td>
<td>Jennifer Blue, Mary Elizabeth Mills, and Ellen Yezierski</td>
<td>78</td>
</tr>
<tr>
<td>Evaluation of a multiple goal revision of a physics laboratory</td>
<td>Scott W. Bonham, Doug L. Harper, and Lance Pauley</td>
<td>82</td>
</tr>
<tr>
<td>Student interactions leading to learning and transfer: A participationist perspective</td>
<td>David T. Brookes, Alexander Moncion, and Yuhfen Lin</td>
<td>86</td>
</tr>
<tr>
<td>ACER: A framework on the use of mathematics in upper-division physics</td>
<td>Marcos D. Caballero, Bethany R. Wilcox, Rachel E. Pepper, and Steven J. Pollock</td>
<td>90</td>
</tr>
<tr>
<td>Evidence of embodied cognition via speech and gesture complementarity</td>
<td>Evan A. Chase and Michael C. Wittmann</td>
<td>94</td>
</tr>
<tr>
<td>Alignment of TAs' beliefs with practice and student perception</td>
<td>Jacquelyn J. Chini and Ahlam Al-Rawi</td>
<td>98</td>
</tr>
<tr>
<td>Comparing student conceptual understanding of thermodynamics in physics and engineering</td>
<td>Jessica W. Clark, John R. Thompson, and Donald B. Mountcastle</td>
<td>102</td>
</tr>
<tr>
<td>Title</td>
<td>Authors</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Understanding the learning assistant experience with physics identity</td>
<td>Eleanor W. Close, Hunter G. Close, and David Donnelly</td>
<td>106</td>
</tr>
<tr>
<td>Nesting in graphical representations in physics</td>
<td>Hunter G. Close, Eleanor W. Close, and David Donnelly</td>
<td>110</td>
</tr>
<tr>
<td>Conserving energy in physics and society: Creating an integrated model of energy and the second law of thermodynamics</td>
<td>Abigail R. Daane, Stamatis Vokos, and Rachel E. Scherr</td>
<td>114</td>
</tr>
<tr>
<td>A comparative study of middle school and high school students’ views about physics and learning physics</td>
<td>Lin Ding</td>
<td>118</td>
</tr>
<tr>
<td>Students’ interdisciplinary reasoning about “high-energy bonds” and ATP</td>
<td>Benjamin W. Dreyfus, Benjamin D. Geller, Vashti Sawtelle, Julia Svoboda, Chandra Turpen, and Edward F. Redish</td>
<td>122</td>
</tr>
<tr>
<td>Building knowledge for teaching: Three cases of physics graduate students</td>
<td>Brian W. Frank and Natasha Speer</td>
<td>126</td>
</tr>
<tr>
<td>Diversity of faculty practice in workshop classrooms</td>
<td>Scott V. Franklin and Tricia Chapman</td>
<td>130</td>
</tr>
<tr>
<td>How an active-learning class influences physics self-efficacy in pre-service teachers</td>
<td>Jon D. H. Gaffney, Amy L. Housley Gaffney, Ellen L. Usher, and Natasha A. Mamaril</td>
<td>134</td>
</tr>
<tr>
<td>The effect of research-based instruction in introductory physics on a common cognitive bias</td>
<td>Ross K. Galloway, Simon P. Bates, Jonathan Parker, and Evguenia Usoskina</td>
<td>138</td>
</tr>
<tr>
<td>Contrasting students’ understanding of electric field and electric force</td>
<td>Alejandro Garza and Genaro Zavala</td>
<td>142</td>
</tr>
<tr>
<td>Students' reasoning about interdisciplinarity</td>
<td>Benjamin D. Geller, Benjamin W. Dreyfus, Vashti Sawtelle, Julia Svoboda, Chandra Turpen, and Edward F. Redish</td>
<td>146</td>
</tr>
<tr>
<td>Arrows as anchors: Conceptual blending and student use of electric field vector arrows</td>
<td>Elizabeth Gire and Edward Price</td>
<td>150</td>
</tr>
<tr>
<td>Exploring student difficulties with pressure in a fluid</td>
<td>Matthew Goszewski, Adam Moyer, Zachary Bazan, and D. J. Wagner</td>
<td>154</td>
</tr>
<tr>
<td>Applying cognitive developmental psychology to middle school physics learning: The rule assessment method</td>
<td>Nicole R. Hallinen, Min Chi, Doris B. Chin, Joe Prempeh, Kristen P. Blair, and Daniel L. Schwartz</td>
<td>158</td>
</tr>
<tr>
<td>Students talk about energy in project-based inquiry science</td>
<td>Benedikt W. Harrer, Virginia J. Flood, and Michael C. Wittmann</td>
<td>162</td>
</tr>
</tbody>
</table>
Investigating student ability to apply basic electrostatics concepts to conductors
Ryan L. C. Hazelton, MacKenzie R. Stetzer, Paula R. L. Heron, and Peter S. Shaffer
166

Department-level change: Using social network analysis to map the hidden structure of academic departments
Charles Henderson and Kathleen Quardokus
170

Student performance on conceptual questions: Does instruction matter?
Paula R. L. Heron
174

Impacting university physics students through participation in informal science
Kathleen Hinko and Noah D. Finkelstein
178

Pedagogy and/or technology: Making difference in improving students’ problem solving skills
Zdeslav Hrepic, Katherine Lodder, and Kimberly A. Shaw
182

Characterizing student use of differential resources in physics integration problems
Dehui Hu and N. Sanjay Rebello
186

A conceptual physics class where students found meaning in calculations
Michael M. Hull and Andrew Elby
190

Evidence of epistemological framing in survey question misinterpretation
Paul Hutchison and Andrew Elby
194

Upper-level physics students’ conceptions of understanding
Paul W. Irving and Eleanor C. Sayre
198

DC circuits: Context dependence of student responses
Ignatious John and Saalih Allie
202

Comparing physics and math problems
Dyan L. Jones and Reni B. Roseman
206

Student expectations in a group learning activity on harmonic motion
Adam Kaczynski and Michael C. Wittmann
210

Comparing the use of multimedia animations and written solutions in facilitating problem solving
Neelam Khan, Dong-Hai Nguyen, Zhongzhou Chen, and N. Sanjay Rebello
214

Successful propagation of educational innovations: Viewpoints from principal investigators and program
Raina Khatri, Charles Henderson, Renee Cole, and Jeff Froyd
218

Narratives of the double bind: Intersectionality in life stories of women of color in physics, astrophysics and astronomy
Lily T. Ko, Rachel R. Kachchaf, Maria Ong, and Apriel K. Hodari
222

Examining inconsistencies in student reasoning approaches
Mila Kryjevskaia and MacKenzie R. Stetzer
226
Considering factors beyond transfer of conceptual knowledge
Eric Kuo, Danielle Champney, and Angela Little
230

An expert path through a thermo maze
Mary Bridget Kustusch, David Roundy, Tevian Dray, and Corinne Manogue
234

Changing classroom designs: Easy; Changing instructors’ pedagogies: Not so easy...
Nathaniel Lasry, Elizabeth Charles, Chris Whittaker, Helena Dedic, and Steven Rosenfield
238

Physics learning identity of a successful student: A plot twist
Sissi L. Li and Dedra Demaree
242

Identity and belonging: Are you a physicist (chemist)?
Sissi L. Li and Michael E. Loverude
246

Student difficulties in translating between mathematical and graphical representations in introductory physics
Shih-Yin Lin, Alexandru Maries, and Chandralekha Singh
250

Using collaborative group exams to investigate students’ ability to learn
Yuhfen Lin and David T. Brookes
254

Assessing students’ metacognitive calibration with knowledge surveys
Beth A. Lindsey and Megan Nagel
258

Physics career intentions: The effect of physics identity, math identity, and gender
Robynne M. Lock, Zahra Hazari, and Geoff Potvin
262

They still remember what I never taught them: Student understanding of entropy
Michael E. Loverude
266

Welcome to America, welcome to college: Comparing the effects of immigrant generation and college generation on physical science and engineering career
Florin Lung, Geoff Potvin, Gerhard Sonnert, and Philip M. Sadler
270

Do perceptually salient elements in physics problems influence students’ eye movements and answer choices?
Adrian Madsen, Amy Rouinfar, Adam Larson, Lester Loschky, and N. Sanjay Rebello
274

Regression analysis exploring teacher impact on student FCI post scores
Jonathan V. Mahadeo, Seth R. Manthey, and Eric Brewe
278

To use or not to use diagrams: The effect of drawing a diagram in solving introductory physics problems
Alexandru Maries and Chandralekha Singh
282

Assessing students’ epistemic logic using clause topics during problem comparison
Fran Mateycik and Kendra Sheaffer
286
Using student notecards as an epistemological lens
Timothy L. McCaskey

The experience sampling method: Investigating students' affective experience
Jayson M. Nissen, MacKenzie R. Stetzer, and Jonathan T. Shemwell

A study of graduate students in an astrophysics bridging year: Identifying contradictions in a complex system
Victoria Nwosu, Saalih Allie, Dedra Demaree, and Andrew Deacon

Guiding without feeling guided: Implicit scaffolding through interactive simulation design
Ariel Paul, Noah Podolefsky, and Katherine Perkins

Affordances of play for student agency and student-centered pedagogy
Noah S. Podolefsky, Danny Rehn, and Katherine K. Perkins

Impacts of curricular change: Implications from 8 years of data in introductory physics
Steven J. Pollock and Noah Finkelstein

Additional evidence of far transfer of scientific reasoning skills acquired in a CLASP reformed physics course
Wendell H. Potter and Robert B. Lynch

Supporting scientific writing and evaluation in a conceptual physics course with calibrated peer review
Edward Price, Fred Goldberg, Scott Patterson, and Paul Heft

Transfer of argumentation skills in conceptual physics problem solving
Carina M. Rebello and N. Sanjay Rebello

Students’ conceptions about rolling in multiple contexts
N. Sanjay Rebello and Carina M. Rebello

Students’ use of resources in understanding solar cells
A. J. Richards and Eugenia Etkina

Coupling epistemology and identity in explaining student interest in science
Jennifer Richards, Luke Conlin, Ayush Gupta, and Andrew Elby

Is conceptual understanding compromised by a problem-solving emphasis in an introductory physics course?
J. Ridenour, G. Feldman, R. Teodorescu, L. Medsker, and N. Benmouna

Cookies as agents for community membership
Idaykis Rodriguez, Renee Michelle Goertzen, Eric Brewe, and Laird Kramer

Utilization of hands-on and simulation activities for teaching middle school lunar concepts
Reni B. Roseman and Dyan L. Jones
Challenging traditional assumptions of secondary science through the PET curriculum
 Mike Ross and Valerie Otero

Scaffolding students’ understanding of force in pulley systems
 Amy Rouinfar, Adrian M. Madsen, Tram Do Ngoc Hoang, Sadhana Puntambekar, and N. Sanjay Rebello

Mathematical vs. conceptual understanding: Where do we draw the line?
 Homeyra Sadaghiani and Nicholas Aguilera

Surveys fail to measure grasp of scientific practice
 Irene Y. Salter and Leslie J. Atkins

Examining the positioning of ideas in the disciplines
 Vashti Sawtelle, Tiffany-Rose Sikorski, Chandra Turpen, and E. F. Redish

The dependence of instructional outcomes on individual differences: An example from DC circuits
 Thomas M. Scaife and Andrew F. Heckler

Effect of paper color on students’ physics exam performances
 David R. Schmidt, Todd G. Ruskell, and Patrick B. Kohl

Predicting FCI gain with a nonverbal intelligence test
 M. R. Semak, R. D. Dietz, R. H. Pearson, and C. W. Willis

Core graduate courses: A missed learning opportunity?
 Chandralekha Singh and Alexandru Maries

Identifying student difficulties with conflicting ideas in statistical mechanics
 Trevor I. Smith, Donald B. Mountcastle, and John R. Thompson

Students’ understanding of density: A cognitive linguistics perspective
 Philip Southey, Saalih Allie, and Dedra Demaree

Applying a framework for characterizing physics teaching assistants’ beliefs and practices
 Benjamin T. Spike and Noah D. Finkelstein

"Learning Arc": The process of resolving concerns through student-student discourse
 Sean Stewart, Maria Paula Angarita, Jared Durden, and Vashti Sawtelle

How a gender gap in belonging contributes to the gender gap in physics participation
 Jane G. Stout, Tiffany A. Ito, Noah D. Finkelstein, and Steven J. Pollock

3rd grade English language learners making sense of sound
 Enrique Suarez and Valerie Otero

Influencing students’ relationships with physics through culturally relevant tools
 Ben Van Dusen and Valerie Otero
Reflective discourse techniques: From in-class discussions to out-of-classroom problem solving
 Wendi Wampler, Dedra Demaree, and Dennis Gilbert

Upper-division student understanding of Coulomb’s law: Difficulties with continuous charge distributions
 Bethany R. Wilcox, Marcos D. Caballero, Rachel E. Pepper, and Steven J. Pollock

New ways of investigating the canonical coin toss acceleration problem
 Michael C. Wittmann and Jeffrey M. Hawkins

Differentiating expert and novice cognitive structures
 Steven F. Wolf, Daniel P. Dougherty, and Gerd Kortemeyer

Promoting children’s agency and communication skills in an informal science program
 Rosemary Wulf, Kathleen Hinko, and Noah Finkelstein

Authentic assessment of students’ problem solving
 Qing Xu, Kenneth Heller, Leonardo Hsu, and Bijaya Aryal

Students’ understanding of dot product as a projection in no-context, work and electric flux problems
 Genaro Zavala and Pablo Barniol

Development and validation of the Colorado learning attitudes about science survey for experimental physics
 Benjamin M. Zwickl, Noah Finkelstein, and H. J. Lewandowski

List of Participants and E-mail Addresses

Author Index
Conference Overview

Cultural Perspectives on Learners’ Performance & Identity in Physics

As new research questions have emerged related to the variability of student reasoning and practices across contexts, the community has begun to attend to the relevance of culture and identity in physics learning. In conducting this work, the PER community has begun to draw from fields such as social psychology, anthropology, linguistics, and sociology along with new methodologies associated with these fields.

In particular, these fields offer new ways of thinking about performance. For example, achievement on various assessment instruments (such as FCI, problem-solving tasks, etc.) is a student performance that researchers and instructors commonly focus on. However, other student performances, such as how students talk and participate in ongoing classroom activities, can also offer valuable sources of evidence about understanding and development. Often, careful consideration of these different performances suggests different accounts of student understanding that are in tension with each other (or seemingly incongruent). Socio-cultural theoretical and methodological tools are useful in developing robust and coherent accounts of student understanding that span these different contexts.

The PER community has also begun to explore identity as a lens for understanding student development and participation in physics. Students' past patterns of engagement with other communities may offer productive resources for engaging in disciplinary practices. Similarly, students' engagement with other communities may also sit in tension with typical school science. From a socio-cultural perspective, identity is constantly a work in progress and enacted with others in cultural activities. This perspective draws attention to the fact that the people and artifacts around you influence (and therefore are partially responsible for) your identity and the performance enacted. Examining and characterizing identity in these ways involves drawing on data beyond the individual and using methodological tools that can account for this broader scope.

One of our goals in this conference was to highlight these emerging research directions and draw attention to the theoretical tools and methodological considerations of cultural practice perspectives on learning and performance. This conference brought in national experts from these fields as plenary speakers, strived to exemplify how these perspectives shape the methods, claims, and analyses of learning environments, and tried to foster integration of these theoretical and methodological perspectives into the work of the PER community.

Organizers:
Ayush Gupta, University of Maryland, College Park
Eleanor Sayre, Kansas State University
Chandra Turpen, University of Maryland, College Park
Jessica Watkins, Tufts University

The organizing committee of the PERC 2012 would like to express gratitude to the following individuals for their invaluable assistance:

The schedule for the 2012 PERC conference was modified during the conference to address various issues that arose as follows:

Wednesday, August 1

3:30 pm – 6:00 pm PERC bridging session Inn at Penn Woodland Ballroom
6:00 pm – 6:30 pm Poster set-up Houston Hall Hall of Flags
6:30 pm – 8:00 pm PERC banquet Sheraton Ben Franklin Ballroom
8:30 pm – 10:30 pm Contributed poster session Houston Hall Hall of Flags
8:30 pm – 9:30 pm Odd-numbered posters
9:30 pm – 10:30 pm Even-numbered posters

Thursday, August 2

All sessions held at the Sheraton

7:30 am – 8:15 am Breakfast Ben Franklin Ballroom
8:15 am – 11:00 am Morning plenary session Ben Franklin Ballroom
8:15 am – 9:45 am Plenary talks
9:45 am – 10:15 am Coffee break
10:15 am – 11:00 am Plenary discussion
11:15 am – 12:45 pm Morning parallel sessions Breakout rooms
12:45 pm – 2:00 pm Lunch Ben Franklin Ballroom
2:00 pm – 3:30 pm Afternoon parallel sessions Breakout rooms
Plenary Sessions Abstracts

AAPT/PERC Bridging Session
Inn at Penn, Woodland Ballroom
Discussant: David Hammer, Tufts University
Moderator: Leslie Atkins, California State University, Chico

Where do physics students come from and what do they become? A look at knowledge and identity pathways through and beyond school experience
Reed Stevens, Northwestern University

Abstract: In this talk, I will present a perspective that conceptualizes learning in cultural practice terms. Cultural practices are differently 'sized' patterns of interaction among people and things to which people orient and hold each other accountable. Learning then involves coming to participate in these patterns of interaction and undergoing possible changes to body, mind, and identity in the process. Cultural practices are often knotted together to make normative cultural paths, through and around which people traverse specific pathways. Drawing on a conceptual framework for studying young people's learning pathways toward "becoming" engineers (Stevens et al., 2008), this presentation will examine the knowledge and identity formation processes in everyday physics, physics education, and professional physics. I will consider an additional dimension of importance, how people individually and with cultural support, navigate through sanctioned institutional passage points and rituals. I will use this framework to generate a set of future-looking questions for physics learning and physics education research.

Practice-Linked Identities, Social identities, and Mathematics Learning
Indigo Esmonde, University of Toronto

Abstract: I will talk about two different ways of thinking about identity as it relates to learning, and discuss the importance of integrating both perspectives. First, I'll talk about practice-linked identity: a sense of self that develops through participation in a set of cultural or collective practices. These identities are shifting and changeable, and are developed in relation to other people in the context. Second, I'll talk about social identity: a sense of self --or a perception of others -- based on socially meaningful categories like race or gender. These identities are seen as quite static (although they may not be experienced that way) and are related to broader systems of oppression in society. I will give examples from my research in mathematics education, and discuss how these concepts can be useful in the study of physics education.
Morning Plenary Session
Sheraton, Ben Franklin Ballroom
Discussant: Noah Finkelstein, University of Colorado at Boulder
Moderator: Hunter Close, Texas State University–San Marcos

Cultural variations in epistemological orientations: Impacts on knowledge, meanings, and reasoning about the natural world
Megan Bang, University of Washington

Abstract: Increasingly, learning scholars have focused on how race, culture and class have been used to define deficit-oriented discourses about students from non-dominant communities understandings, thinking, experiences, and language use (e.g., what comprises an effective explanation or convincing data; what "smart" looks and sounds like) and restrict the intellectual opportunities these youth have to learn in school (e.g., Lee, 2009; Gutierrez et. al, 2009; Barton & Tan, 2008). We have sought to understand how these issues place epistemological demands on Indigenous students, specifically in thinking and sense-making about the natural world towards the goal of creating more affective learning environments. Through a micro-analysis of two contexts, one an informal interaction between a child and their parent, and one in a learning environment, I explore how relational epistemologies, and variations in causality and inference are embedded in these issues and raise questions and possibilities in the design of learning environments.

When Everyday and Scientific Concepts Grow Into One Another: Syncretic and Connected Learning
Kris Gutiérrez, University of Colorado at Boulder

Abstract: As schools become increasingly irrelevant to meaningful learning for young people, they also fail in fulfilling their social equalizing agenda. There is a growing disconnect between the interests and everyday practices of our nation’s students and formal schooling’s approaches to engaging them in rigorous, meaningful, and relevant learning. Of concern, there are social and cognitive, as well as personal, institutional, and economic consequences to disconnected learning. Today’s students move across a range of contexts and produce artifacts that reflect the intercultural, hybrid, and multimodal practices of which they are part. These repertoires developed across the ecologies of interest and everyday life should be cultivated as important dimensions to consequential learning. From a cultural historical learning perspective, transformative learning involves shifts between and across new combinations of contexts and tools that can be leveraged across ecologies and domains of learning (Engeström, 2003; Gutierrez, 2008). Drawing on the best of what we know about how people learn, this paper focuses on how we can ratchet up learning across a range of ecologies by designing openings and forms of support that create opportunities for new learning pathways into the future. In particular, it focuses on the affordances of syncretic and connected learning approaches in supporting the development of toolkits that have utility across tasks, purposes, disciplinary boundaries, learning environments, and future-oriented trajectories and identities.